Rethinking AADT: Overview of Emerging Research & Practice

2016 CITE Conference Kelowna

Giuseppe Grande, B.Sc., EIT
Steven Wood, B.Sc., EIT
Auja Ominski, B.Sc., EIT
Jonathan Regehr, Ph.D., P.Eng
Outline

1. Introduction
2. Current Practice
3. New AADT Formulation
4. Illustrative Analysis
 a) Findings
 b) Practical implications
5. Concluding remarks
6. References
Introduction

This presentation reviews current and emerging practice for determining AADT from continuous count sites.

What is AADT?
- AADT is the number of vehicles passing a point on an average day of the year

Where do the data come from?
- Continuous count sites (focus of this presentation)
- Short-duration count sites (requires factoring)
Importance of AADT
Current Practice

So how do we currently calculate AADT?

• Simple average (if we have “good” data)

• AASHTO Method
Simple Average

Exactly what it sounds like:

\[AADT = \frac{1}{n} \sum_{i=1}^{n} VOL_i \]

Where:
\(VOL_i \) = total traffic on \(i \)th day of year
\(n \) = number of days in a particular year
Simple Average

Exactly what it sounds like:

\[AADT = \frac{1}{n} \sum_{i=1}^{n} VOL_i \]

- Works perfectly IF we have 365 full days of data (i.e., 24-hours each)
- If missing hours (or days) we introduce a bias because of the natural periodicities of traffic flow
AASHTO Method

Accounts for bias in missing data by grouping similar days by day of week and month:

\[
AADT = \frac{1}{12} \sum_{m=1}^{12} \frac{1}{7} \sum_{j=1}^{7} \frac{1}{n_{jm}} \sum_{i=1}^{n_{jm}} VOL_{ijm}
\]

Where:
\(VOL_{ijm}\) = total traffic on \(i\)th occurrence of \(j\)th day of week within \(m\)th month
\(i\) = occurrence of a particular day of week in a particular month
\(j\) = day of week (1 to 7)
\(m\) = month of year (1 to 12)
\(n_{jm}\) = amount of times day \(j\) occurs in month \(m\) for which traffic data is available
AASHTO Method

Accounts for bias in missing data by grouping similar days by day of week and month:

\[AADT = \frac{1}{12} \sum_{m=1}^{12} \frac{1}{7} \sum_{j=1}^{7} \frac{1}{n_{jm}} \sum_{i=1}^{n_{jm}} VOL_{ijm} \]

- Still requires 24 hours of data in a single day
- Requires at least one of every day-of-the-week per month
- Can calculate by class
AASHTO Method

JAN

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC
AASHTO Method: What Works

<table>
<thead>
<tr>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AASHTO Method: What Doesn’t

<table>
<thead>
<tr>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Data unavailable

Data available
New AADT Formulation: HPSJB

Concerns with accuracy and inability to use valuable data led to creation of the Highway Policy Steven Jessberger-FHWA and Battelle (HPSJB) Method
New AADT Formulation: HPSJB

\[
AADT = \frac{\sum_{m=1}^{12} d_m \times \sum_{j=1}^{7} w_{jm} \times \sum_{h=1}^{24} \left[\frac{1}{n_{hjm}} \sum_{i=1}^{n_{hjm}} VOL_{ihjm} \right]}{\sum_{j=1}^{7} w_{jm} \sum_{m=1}^{12} d_m}
\]

Where:

\(VOL_{ihjm}\) = total traffic on \(i\)th occurrence of the \(h\)th hour within \(j\)th day of week within \(m\)th month

\(i\) = occurrence of a particular day of week in a particular month

\(h\) = hour of day (1 to 24)

\(j\) = day of week (1 to 7)

\(m\) = month of year (1 to 12)

\(n_{hjm}\) = number of times hour \(h\) within day \(j\) of week occurs during month \(m\) for which traffic data is available

\(w_{jm}\) = number of times day \(j\) occurs during month \(m\)

\(d_m\) = number of days in month \(m\)
New AADT Formulation: HPSJB

Two major differences from AASHTO method:

• Group by hour of day – *Improve useful number of days*

• Weighted average – *Reduce bias from shorter months*

\[
AADT = \frac{\sum_{m=1}^{12} d_m * \sum_{j=1}^{7} w_{jm} * \sum_{h=1}^{24} \left(\frac{1}{n_{hjm}} \sum_{i=1}^{n_{hjm}} VOL_{ihjm} \right)}{\sum_{j=1}^{7} w_{jm}}
\]
HPSJB: Advantages
HPSJB: Advantages

Data unavailable

Data available

JAN

1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

FEB

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

MAR

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

APR

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

JULY 4

12:00 AM
1:00 AM
2:00 AM
3:00 AM
4:00 AM
5:00 AM
6:00 AM
7:00 AM
8:00 AM
9:00 AM
10:00 AM
11:00 AM
12:00 PM
1:00 PM
2:00 PM
3:00 PM
4:00 PM
5:00 PM
6:00 PM
7:00 PM
8:00 PM
9:00 PM
10:00 PM
11:00 PM

JULY 25

12:00 AM
1:00 AM
2:00 AM
3:00 AM
4:00 AM
5:00 AM
6:00 AM
7:00 AM
8:00 AM
9:00 AM
10:00 AM
11:00 AM
12:00 PM
1:00 PM
2:00 PM
3:00 PM
4:00 PM
5:00 PM
6:00 PM
7:00 PM
8:00 PM
9:00 PM
10:00 PM
11:00 PM
Illustrative Analysis Using Manitoba Data

Analysis Objective:
• Study the robustness of the simple average versus AASHTO versus other formulations
Illustrative Analysis Using Manitoba Data

Source Data:

• In Manitoba, 79 permanent count sites
• For 2014, 33 counters (with vehicle classifying capabilities) had 24 hours of data for a full year
• Two stations were analyzed: Station 1 and 90
• Both stations are automatic vehicle classifiers that counted for a full 24 hours every day in 2014
Illustrative Analysis Using Manitoba Data

Analysis Method:

- Take counters with full year of 24-hour data
 - Treat them as if they are missing data
 - Compute AADTT using methods and compare to actual AADTT

- Data were removed following several different temporal patterns meant to represent real-life scenarios
Illustrative Analysis Using Manitoba Data

Station 1:
• Near Winnipeg perimeter highway
• Heavy urban influence
• True AADTT = 520
Illustrative Analysis Using Manitoba Data

Station 90:

- Northwest Manitoba near The Pas
- Heavy forestry influence
- True AADTT = 150
Illustrative Analysis Using Manitoba Data

1-Day Removal (St. 1):

- Data removed for full 24 hours each day of the year
- HPSJB is poorest when holidays are removed
Illustrative Analysis Using Manitoba Data

1-Day Removal (St. 90):

• Data removed for full 24 hours each day of the year

• Low volume obscures the apparent patterns
Illustrative Analysis Using Manitoba Data

Construction Scenario (St. 1):
- Mon-Fri data removed from 7:00 AM - 5:00 PM for two weeks
- Generally, HPSJB performs best (but with exceptions)
Illustrative Analysis Using Manitoba Data

Construction Scenario (St. 90):

• Mon-Fri data removed from 7:00 AM- 5:00 PM for two weeks

• Generally, HPSJB performs best (but with exceptions)
Findings

• Research shows that HPSJB method improves accuracy of AADT when days are missing
 • Reduced bias
 • Improved confidence
 • Accuracy improvements are evident but in the order of 0-2% of true AADTT

• Expected addendum to FHWA Traffic Monitoring Guide
• Possible consideration in new Canadian guide for traffic monitoring (in progress)
Practical Implications

• Better utilization of continuous counters
 • Less data rejection
 • Inclusion of data from alternative sources (e.g., loops at traffic signals)

• Although accuracy improvements are small, they may be important in certain applications
 • Determining and applying traffic growth rates
 • Evaluating conditions of a warrant
Concluding Remarks

• AADT is the fundamental measure of traffic volume
• A new AADT formula has been proposed that provides a small improvement in accuracy and better reliability when missing days of data
• Changes in AADT calculations influence transportation engineering applications
References

